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Abstract
Using a matrix (operator) method, the problem of scattering of arbitrary
electromagnetic waves by multilayer bianisotropic cylinders is solved. The
scattering of a Gaussian beam is considered as an example.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Scattering is one of the fundamental problems of theoretical and experimental physics [1, 2].
There are various types of scattering, such as electromagnetic wave scattering (by dielectric or
metal particles, by spherical or cylindrical particles, etc) and particle scattering by a potential
(classical or quantum scattering of spin or spinless particles). The theory of particle scattering
is widely used in quantum field theories and nuclear physics. In this paper we deal only with
the scattering of electromagnetic fields by circular cylinders.

Cylindrically symmetric objects have been studied for a long time. Nowadays, there are
many applications of cylinders guiding electromagnetic waves. Dielectric or metal circular
fibres can be used not only for optical communications [3] but also for designing sensors [4].
New types of materials (e.g. bianisotropic materials) are promising for the creation of devices
with peculiar properties. Fibre sensors can be applied to detect magnetic fields and electric
currents (on the basis of the magnetostrictive principle) [5], twist and pressure (e.g. in highly
birefringent bow-tie fibres [6]), etc. In [7] a method for fibre sensing based on an analysis of
the forward-scattering intensity pattern is described. That approach is less sophisticated and
less costly than the methods used previously.

Some other applications of scattering are presented below. First, the scattering of a wave
by chiral cylinders [8–10], which can emulate biological objects, is studied. Second, attention
is focused on scattering by a cylinder fabricated from a left-handed material [11–13]. Left-
handed materials (negative-refractive media, metamaterials) simultaneously possess negative
dielectric and magnetic permittivities [14, 15]. Therefore, electromagnetic waves propagate
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in a sufficiently different way compared with traditional media and new scattering properties
are foreseen. One more application is connected with phase-Doppler anemometry. Phase-
Doppler anemometry is an optical technique for simultaneous measurement of the velocity and
the size of spherical particles in flows. In [16, 17] an attempt to generalize that technique to the
characterization of cylindrical particles was made.

The study of the diffraction of electromagnetic waves in complex media is a great
challenge. Theoretical research in this field was made, for example, in [18–20]. The authors
investigated the scattering of obliquely incident waves by a perfectly conducting strip. The
strip can be situated both in an unbounded bianisotropic (biisotropic, gyrotropic) medium or in
a bianisotropic cylinder. To solve such a complicated problem, the authors derived systems of
singular integral–integrodifferential equations having the induced surface current densities as
the unknowns. The technique offered is very effective for calculation of the cross-sections of
ordinary and extraordinary electromagnetic waves. In [21] the electromagnetic scattering from
chiral circular cylinders with different locations and radii was investigated using an iterative
scattering procedure. The cylinders can be made of anisotropic chiral material with a uniform
or non-uniform chiral admittance distribution, a homogeneous isotropic dielectric material, a
perfectly conducting material or a combination of all of these. In [22] a modelling technique
based on the principle of the equivolumetric model was applied to describe multiple scattering
from bianisotropic cylinders. Another problem to investigate is electromagnetic scattering by a
multilayer gyrotropic bianisotropic circular cylinder. The authors of [23] derived coupled wave
equations for longitudinal field components and applied the eigenfunction expansion method.
Linear algebraic equations were solved with and without the centre being a perfect electric
conducting cylinder. Some results for the scattering by arrays of cylinders can be obtained in
the eikonal approximation [24].

Our investigation allows us to advance in each of the directions mentioned above because
we develop a new matrix method to describe the scattering of arbitrary electromagnetic fields by
multilayer bianisotropic cylinders. In section 2 the basic concepts of our method are presented.
Our matrix (operator) techniques were verified earlier for the cases of optical fibres [25] and
beams [26], as well as for electromagnetic scattering by spherical particles [27]. Section 3 is
devoted to scattering by cylinders. Section 4 contains a study of the scattering of a Gaussian
beam by a bianisotropic cylinder with isotropic cladding.

2. Vector cylindrical solutions of Maxwell’s equations in bianisotropic media

We use the well-known definition of bianisotropic media as general media with four tensor
linear characteristics in constitutive equations

D = εE + αH B = κE + μH (1)

where H , E, B and D are strengths and inductions of magnetic and electric fields, ε and μ are
dielectric permittivity and magnetic permeability tensors, respectively, and α and κ are gyration
tensors. We consider only cylindrically symmetric tensors ξ = {ε, μ, α, κ}

ξ = ξ1 Iz + ξ2ez ⊗ ez + iχξe
×
z (2)

where (r , ϕ, z) are cylindrical coordinates, e1 = er (ϕ), e2 = eϕ(ϕ), e3 = ez are the basis
vectors in cylindrical coordinates, ei ⊗ e j is the dyad; e×

z is the tensor dual to the vector
ez [25–28] and Iz = 1−ez ⊗ez is the projection operator onto the plane perpendicular to vector
ez . Scalar coefficients ξ1, ξ2 and χξ are constant values. The eigenwaves in the medium (2) can
be called cylindrical electromagnetic waves. They can be described as follows(

H(r, t)
E(r, t)

)
= eiβz+iνϕ−iωt

(
H(r)

E(r)

)
(3)

2
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where β is the longitudinal wavenumber, ω is the wave frequency and ν is the azimuthal number
taking integer values. As a result, one can reduce the Maxwell equations to a system of ordinary
differential equations of the first order [25] for tangential field components

dW (r)

dr
= ikM(r)W (r) (4)

where

M =
(

A B
C D

)
W =

(
Ht

Et

)

A = i

kr
eϕ ⊗ eϕ + e×

r α Ir + e×
r εer ⊗ v3 + e×

r (u + αer ) ⊗ v1

B = e×
r ε Ir + e×

r εer ⊗ v4 + e×
r (u + αer ) ⊗ v2

C = −e×
r μIr − e×

r μer ⊗ v1 + e×
r (u − κer ) ⊗ v3

D = i

kr
eϕ ⊗ eϕ − e×

r κ Ir − e×
r μer ⊗ v2 + e×

r (u − κer ) ⊗ v4

v1 = δr (κrr erα Ir − εrr erμIr − κrru) v2 = δr (κrrerε Ir − εrr erκ Ir − εrru)

v3 = δr (αrr erμIr − μrr erα Ir + μrru) v4 = δr (αrr erκ Ir − μrrerε Ir + αrr u)

u = (β/k)eϕ − ν/(kr)ez δr = (εrrμrr − αrr κrr )
−1

εrr = erεer , μrr = erμer αrr = erαer κrr = erκer .

(5)

Tangential components of strength vectors are situated in the plane (ϕ, z) and are equal to
Et = Ir E and Ht = IrH , where Ir = 1 − er ⊗ er is the projection operator onto the plane
orthogonal to the unit vector er and k = ω/c is the vacuum wavenumber. We should note that
the system of differential equations of the first order for planar stratified media was derived
earlier in [29].

In a number of papers we obtained some cylindrical solutions for isotropic, biisotropic and
bianisotropic media. Here, we briefly demonstrate how to obtain these solutions, based on the
paper [25]. Matrix M is the matrix function with respect to the radial coordinate r :

M = M (0) + 1

r
M (1) + 1

r 2
M (2) (6)

where

M (0) = M (0)
zϕ ez ⊗ eϕ + M (0)

ϕz eϕ ⊗ ez

M (1) = M (1)
zz ez ⊗ ez + M (1)

ϕϕ eϕ ⊗ eϕ M (2) = M (2)
ϕz eϕ ⊗ ez.

(7)

2 × 2 matrices M (0)
zϕ , M (0)

ϕz , M (1)
zz , Mϕϕ and M (2)

ϕz can be determined from (5). They are simple
for isotropic media and cumbersome for bianisotropic media. Complicated matrices can be
calculated using a computer.

Further, we can find longitudinal field components of the wave propagating in a
bianisotropic medium (2) from the differential equation

d2

dr 2

(
Hz

Ez

)
+ 1

r

d

dr

(
Hz

Ez

)
+

(
Q − ν2

r 2

(
1 0
0 1

)) (
Hz

Ez

)
= 0 (8)

where Q = k2 M (0)
zϕ M (0)

ϕz is a two-dimensional matrix. It is obvious that the solutions of
equation (8) are Bessel functions of the first J|ν| and second Y|ν| kind of order |ν|. Using
the spectral decomposition for matrix Q one obtains(

Hz

Ez

)
= (c1 J|ν|(q1r) + c3Y|ν|(q1r)) �w1 + (c2 J|ν|(q2r) + c4Y|ν|(q2r)) �w2 (9)

3
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where q2
1 , q2

2 are the eigenvalues of Q and �w1, �w2 are its eigenvectors. Introducing two
vectors c1 and c2 with constant components ci , i = 1, 2, 3, 4 we can write the tangential
field components

W =
(

η1(r)c1

ζ1(r)c1

)
+

(
η2(r)c2

ζ2(r)c2

)
(10)

where planar tensors η1, ζ1 equal (planar tensors are defined as η1 Ir = Irη1 = η1)

η1 = �e1 �w1 J|ν|(q1r)ez ⊗ ez + �e1 Ẑ J|ν|(q1r) �w1eϕ ⊗ ez

+ �e1 �w2 J|ν|(q2r)ez ⊗ eϕ + �e1 Ẑ J|ν|(q2r) �w2eϕ ⊗ eϕ

ζ1 = �e2 �w1 J|ν|(q1r)ez ⊗ ez + �e2 Ẑ J|ν|(q1r) �w1eϕ ⊗ ez

+ �e2 �w2 J|ν|(q2r)ez ⊗ eϕ + �e2 Ẑ J|ν|(q2r) �w2eϕ ⊗ eϕ.

(11)

Replacing J|ν| by Y|ν| one can get the tensors η2, ζ2. In expression (11) we introduce unit
two-dimensional vectors �e1 = (1 0)T, �e2 = (0 1)T and matrix differential operator Ẑ is equal
to

Ẑ = M (0)−1
zϕ

(
1

ik

d

dr
− 1

r
M (1)

zz

)
.

The waves characterized by η1, ζ1 and η2, ζ2 correspond to two independent solutions of
equations (4) which are expressed by Bessel functions of the first and second kind, respectively.
There are other solutions of equation (8), e.g. modified Bessel functions Iν and Kν , as well as
Hankel functions of the first H (1)

ν and second H (2)
ν kind. Hankel function of the first (second)

kind H (1,2)
ν (r) = Jν(r) ± iYν(r) correspond to the divergent (converging) cylindrical wave.

The quantities containing Hankel functions we will denote as letters with a tilde, for example
η̃ and ζ̃ . Tensor notation for cylindrical waves is analogous to the notation for forward and
backward plane waves.

Tensors η and ζ are very useful for describing multilayer systems because they determine
field components that are continuous at cylindrical interfaces. Using these tensors we can define
another two quantities: the transfer matrix (characteristic matrix, evolution operator)

�r
a =

(
η1(r) η2(r)

ζ1(r) ζ2(r)

) (
η1(a) η2(a)

ζ1(a) ζ2(a)

)−1

(12)

and the impedance tensor

�m = ζmη−1
m m = 1, 2. (13)

The transfer matrix �r
a allows us to find the tangential field components in any point r if the

initial vector W (a) is known: W(r) = �r
aW(a). So, the quantity �r

a expresses the spatial
evolution of an electromagnetic field. The impedance tensor is the general linear relationship
between electric and magnetic fields for each eigenwave: Etm = �mHtm . We can apply inverse
matrices (in equations (12) and (13)), if η and ζ are presented as two-dimensional matrices. If η

and ζ are three-dimensional matrices, then we should use pseudoinversion instead of inversion.
Total field components can be computed by means of matrix V :(

H(r)

E(r)

)
= eiβz+iνϕ V (r)W (r) V =

(
Ir + er ⊗ v1 er ⊗ v2

er ⊗ v3 Ir + er ⊗ v4

)
. (14)

An example of application of the formulae is presented below. For isotropic media with
dielectric permittivity ε and magnetic permeability μ one obtains

η1 = Jν(qr)

(
ez − βν

q2r
eϕ

)
⊗ ez + ikε

q
J ′
ν(qr)eϕ ⊗ eϕ

ζ1 = − ikμ

q
J ′
ν(qr)eϕ ⊗ ez + Jν(qr)

(
ez − βν

q2r
eϕ

)
⊗ eϕ

(15)

where q = √
k2εμ − β2, J ′

ν(x) = dJν(x)/dx .

4
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3. Light scattering by multilayer cylinders

Let the electromagnetic wave, the field strengths of which are H (0) and E(0), be incident from
a vacuum (ε = 1, μ = 1) on the n-layered cylindrical particle with bianisotropic constitutive
parameters

(ε, μ, α, κ) =
{

(ε(1), μ(1), α(1), κ(1)) for 0 < r < a1

(ε( j), μ( j), α( j), κ( j)) for a j−1 < r < a j , j = 2, . . . , n.
(16)

We assume that the longitudinal length of the cylindrical particle is much greater than the
wavelength. Therefore, an infinite length for the particle can be considered.

The incident wave induces the field inside the cylinder. The values of the field strengths in
the outer nth cladding can be written as(

H(r, ϕ, z)
E(r, ϕ, z)

)
=

∫ ∞

−∞

∞∑
ν=−∞

eiβz+iνϕ V (r)�r
a1

[ν]
(

Ir

�ν

)
bν(β) dβ (17)

where bν(β) are vector field amplitudes, �r
a1

[ν] is the evolution operator for the νth cylindrical
wave and �ν = �ν(a1) is the wave impedance tensor at the interface r = a1 in the first layer.

The scattered wave propagates in a vacuum and is described as follows:(
H (sc)(r, ϕ, z)
E(sc)(r, ϕ, z)

)
=

∫ ∞

−∞

∞∑
ν=−∞

eiβz+iνϕ V (sc)(r)

(
Ir

�̃ν(r)

)
η̃1ν(r)η̃−1

1ν (an)b
(sc)
ν (β) dβ. (18)

The quantities with tildes are expressed in terms of the Hankel function of the first kind H (1)
ν .

During scattering we are interested in the fields H (sc), E(sc) in infinity. At r → ∞ the
Hankel function corresponds to the divergent cylindrical wave H (1)

ν (qr) ≈ Ceiqr/
√

r , where
C = const. Replacing ε, μ, Jν in (15) by ε = 1, μ = 1, H (1)

ν , respectively, we obtain at the
limit r → ∞
η̃1ν(r) ≈ C

eiqr

√
qr

(
ez ⊗ ez − k

q
eϕ ⊗ eϕ

)
ζ̃1ν(r) ≈ C

eiqr

√
qr

(
ez ⊗ eϕ + k

q
eϕ ⊗ ez

)

�̃ν(r) ≈ k

q
eϕ ⊗ ez − q

k
ez ⊗ eϕ ≡ �̃ V (sc)

l (r) ≈ E ≡
(

Ir 0
0 Ir

)
.

(19)

The impedance tensor depends neither on azimuthal number ν nor radial coordinate r .
Therefore, the scattered field can be rewritten as(

H (sc)(r, ϕ, z)
E(sc)(r, ϕ, z)

)
=

∫ ∞

−∞
eiqr

√
r

(
eiqan

√
an

)−1 (
Ir

�̃

) ∞∑
ν=−∞

eiβz+iνϕb(sc)
ν (β) dβ. (20)

Unknown amplitudes bν(β) and b(sc)
ν (β) can be determined from continuity conditions for

the tangential components of electric and magnetic fields at the outer surface r = an of the
multilayer cylinder:(

H
(0)
t (an, ϕ, z)

E
(0)
t (an, ϕ, z)

)
+

(
H

(sc)
t (an, ϕ, z)

E
(sc)
t (an, ϕ, z)

)
=

(
Ht (an, ϕ, z)

Et(an, ϕ, z)

)
. (21)

For an infinitely long cylinder the longitudinal coordinate z takes values from −∞ to +∞.
By substituting equations (17), (20) and designating W (0) = (H

(0)
t ,E

(0)
t )T we express the

boundary conditions as follows

W (0)(an, ϕ, z) +
∫ ∞

−∞

(
Ir

�̃

) ∞∑
ν=−∞

eiβz+iνϕb(sc)
ν (β)dβ

=
∫ ∞

−∞

∞∑
ν=−∞

eiβz+iνϕ�an
a1

[ν]
(

Ir

�ν

)
bν(β)dβ. (22)

5
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Multiplying equation (22) by e−iβ ′z−iν′ϕ/(2π)2 and integrating over z from −∞ to ∞ and
over ϕ from 0 to 2π we obtain

W (0)
ν (an, β) +

(
Ir

�̃

)
b(sc)

ν (β) = �an
a1

[ν]
(

Ir

�ν

)
bν(β) (23)

where

W (0)
ν (an, β) = 1

(2π)2

∫ ∞

−∞
dz e−iβz

∫ 2π

0
dϕ e−iνϕW (0)(an, ϕ, z). (24)

Amplitudes of the scattered field can be easily found from (23) if we multiply this equation
by block matrix (�ν − Ir )�

a1
an

[ν]:

b(sc)
ν (β) = −

[
(�ν − Ir )�

a1
an

[ν]
(

Ir

�̃

)]−1

(�ν − Ir )�
a1
an

[ν]W (0)
ν (an, β) (25)

where �a1
an

= (�an
a1

)−1.
The scattered field can be characterized by the differential scattering cross-section (the

power radiated in the direction er per unit solid angle)

dσ

do
= r

|H (sc)|2
|H (0)|2 . (26)

By substituting the expression for the scattered magnetic field (20) into the formula for the
differential cross-section one obtains

dσ

do
(ϕ, z) = an

|H (0)|2
∣∣∣∣
∫ ∞

−∞

∞∑
ν=−∞

eiβz+iνϕb(sc)
ν (β)dβ

∣∣∣∣
2

. (27)

Angle ϕ averaging results in

dσ

dz
(z) = an

|H (0)|2
∞∑

ν=−∞

∣∣∣∣
∫ ∞

−∞
eiβzb(sc)

ν (β)dβ

∣∣∣∣
2

. (28)

The scattering angle θ can be easily introduced as follows: z = cot θ . Therefore, equation (28)
can be rewritten as

dσ

dθ
(θ) = an

sin2 θ |H (0)|2
∞∑

ν=−∞

∣∣∣∣
∫ ∞

−∞
eiβ cot θb(sc)

ν (β)dβ

∣∣∣∣
2

. (29)

4. Example and conclusion

Let us consider a y-polarized Gaussian beam

H (0) = exp(ikz cos θ0 + ikx sin θ0) exp

(
− (x cos θ0 − z sin θ0)

2

2w2

)
ey

incident onto the two-layer cylinder with bianisotropic core (ε(1) = ε1 Iz + ε2ez ⊗ ez ,
μ(1) = μ1 Iz + μ2ez ⊗ ez , α = κ = iχe×

z ) and isotropic cladding (ε(2) = ε, μ(2) = μ,
α = κ = 0), where θ0 is the angle of incidence and w is the beam waist (see figure 1). In
cylindrical coordinates tangential components of the incident electromagnetic field take the
form

H
(0)
t = F(r, ϕ, z) cos ϕeϕ E

(0)
t = iF(r, ϕ, z)

[(
i sin θ0 − cos θ0

kw2
(x cos θ0 − z sin θ0)

)
ez

+ sin ϕ

(
i cos θ0 + sin θ0

kw2
(x cos θ0 − z sin θ0)

)
eϕ

]

F(r, ϕ, z) = exp(ikz cos θ0 + ikr cos ϕ sin θ0) exp

(
− (r cos ϕ cos θ0 − z sin θ0)

2

2w2

)
.

(30)

6
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a1

a2

θ0 θ

x

z

y

Gaussian beam

Figure 1. Gaussian beam scattering by a two-layer bianisotropic cylinder.

The differential cross-section can be easily found if the following steps are taken:
(i) calculate vectors W (0)

ν (an, β) applying formula (24); (ii) compute scattering field
amplitudes b(sc)

ν (β) using equation (25); (iii) substitute the scattering field amplitudes found
above into equation (29). In denominator of (29) we shall take |H (0)(x = 0, z = 0)|2 = 1. For
calculation of integrals we can use fast Fourier transform.

To determine the amplitudes b(sc)
ν (β) we should use the impedance tensor �̃ (see

equation (19)), as well as the evolution operator (12) for an isotropic medium and the
impedance tensor (13) for a bianisotropic medium, which can be expressed by means of
auxiliary tensors η and ζ . These tensors have already been written for an isotropic medium as
equation (15). For a bianisotropic medium the tensors η and ζ are equal to (see papers [25, 26])

η1 = Jν(q1r)

(
ez − μ2ν(β − ikχ)

μ1q2
1r

eϕ

)
⊗ ez + ikε2 J ′

ν(q2r)

q2
eϕ ⊗ eϕ,

ζ1 = − ikμ2 J ′
ν(q1r)

q1
eϕ ⊗ ez + Jν(q2r)

(
ez − ε1ν(β + ikχ)

ε1q2
2r

eϕ

)
⊗ eϕ,

(31)

where q2
1 = k2ε1μ2 − (k2χ2 + β2)μ2/μ1, q2

2 = k2ε2μ1 − (k2χ2 + β2)ε2/ε1.
Differential cross-sections can be computed for each ν; they are called partial cross-

sections. In figure 2 we present partial differential cross-sections for ν = −6, . . . , 6. The
total differential cross-section is the sum of all partial cross-sections. In real calculations the
sum of a finite number of partial differential cross-sections is used (the sum from −6 to 6 in
figure 2). The dependence of partial differential cross-sections on scattering angle has the same
behaviour for all ν. The greatest contribution to dσ/do is for ν = ±1, due to the presence of
cos ϕ and sin ϕ in the initial fields. Total differential cross-section almost repeat the shape of
the curve for |ν| = 1. Partial cross-sections from |ν| = 1 to 6 follow one after another. The
case ν = 0 is out of this sequence. The contributions for |ν| > 6 are much smaller than that
for |ν| = 1 and can therefore be neglected. Great scattering for small scattering angles is due
to the guiding properties of the cylinder, which localizes the energy near its interface.

In figure 3 the θ0-dependence of differential cross-sections is presented. For small angles
of incidence the partial contribution of ν = ±1 dominates. For large angles (close to 90◦)
differential cross-sections for higher order νs play an important part. The total differential

7
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ν

ν

ν

ν
ν

ν

ν

θ

Figure 2. Partial and total differential cross-sections versus scattering angle. Parameters: ε1 = 2.1,
μ1 = 1.25, ε2 = 2, μ2 = 1.2, χ = 0.1, ε = 2.5, μ = 1, ka1 = 2, ka2 = 3, kw = 2, θ0 = 30◦.

ν

ν

θ

ν

ν

ν

ν

ν

Figure 3. Partial and total differential cross-sections versus angle of incidence. Parameters:
ε1 = 2.1, μ1 = 1.25, ε2 = 2, μ2 = 1.2, χ = 0.1, ε = 2.5, μ = 1, ka1 = 2, ka2 = 3,
kw = 2, scattering angle θ = 60◦.

cross-section takes maximal values for small and large differential cross-sections (see figure 4).
For angles of incidence close to 90◦ the scattering depends on scattering angle mainly as
1/ sin2 θ , because the value 10 lg(sin 60◦/ sin 20◦)2 ≈ 8 dB is the gap between the curves
for θ = 60◦ and 20◦.

Since we are considering a bianisotropic cylinder, it is interesting to trace the dependence
on the bianisotropic medium parameter χ . In figure 5 one can see that the dependence on χ

is weak. Usually, the parameter χ is much smaller than the dielectric permittivity. However,
even if we take large values (χ = 0.3), a small increase (0.03 dB) is observed. Such a weak
dependence can be used for accurate control of the cross-section.
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θ °
θ °

θ

Figure 4. Total differential cross-sections versus angle of incidence for two values of scattering
angle θ = 60◦ and 20◦. Parameters: ε1 = 2.1, μ1 = 1.25, ε2 = 2, μ2 = 1.2, χ = 0.1, ε = 2.5,
μ = 1, ka1 = 2, ka2 = 3, kw = 2.

χ

Figure 5. Differential cross-section versus bianisotropic medium parameter χ . Parameters:
ε1 = 2.1, μ1 = 1.25, ε2 = 2, μ2 = 1.2, ε = 2.5, μ = 1, ka1 = 2, ka2 = 3, kw = 2,
θ = 30◦, θ0 = 45◦.

In figure 6 the differential cross-section depending on the Gaussian beam waist is
presented. For small waists the differential cross-section increases due to the increase in the
incident beam energy. The energy

∫ ∞
∞ |E(0)|dx1 behaves like 1/w for small w and goes to

infinity, when w −→ 0, where x1 is the coordinate orthogonal to the beam incidence direction.
For large waists the total differential cross-section arises again, because in this case the beam
energy depends linearly on w.

There is no strong dependence on the cylinder core radius, because the refractive indices
of the bianisotropic core and isotropic cladding are close. In figure 7 the core radius is fixed,
while the radius of the cladding a2 is the variable. There are regions of cladding radius for
which one or another partial differential cross-section is considerable. For example, for ν = 3
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ν

ν

ν
ν

ν

Figure 6. Partial and total differential cross-sections versus Gaussian beam waist. Parameters:
ε1 = 2.1, μ1 = 1.25, ε2 = 2, μ2 = 1.2, χ = 0.1, ε = 2.5, μ = 1, ka1 = 2, ka2 = 3, θ = 30◦,
θ0 = 45◦.

ν
ν

ν
ν

ν

ν

Figure 7. Partial and total differential cross-sections versus cladding radius. Parameters: ε1 = 2.1,
μ1 = 1.25, ε2 = 2, μ2 = 1.2, χ = 0.1, ε = 2.5, μ = 1, ka1 = 2, kw = 2, θ = 30◦, θ0 = 45◦.

this region starts with the value ka2 ≈ 4. Since for a greater cladding radius more beam energy
is scattered, the total differential cross-section increases.

In conclusion, we have developed an effective matrix method for describing light scattering
by bianisotropic cylindrical particles. The main advantages of the approach are the possibility
to apply it to multilayer cylinders, the possibility to consider an arbitrary beam and the
possibility to easily write the algorithm for computations. Complicated mathematics is
necessary to solve the scattering problem in a sufficiently general case. However, using the
final formulae we can now numerically calculate the scattering characteristics. The example of
the scattering of a Gaussian beam confirms the functionality of the method.
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